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A Fourier-Chebyshev spectral simulation of two-dimensional compressible convection is
presented. The fluid is a perfect gas with constant dynamic viscosity and thermal conductivity.
Both slippery and rigid boundary conditions for the velocity are used here. The temperature is
maintained fixed at the upper and lower boundaries. An explicit Adams-Bashforth predictor-
corrector numerical scheme is used in order 1o overcome the Courant-Friedriechs—Lewy con-
dition. The nonlinear diffusion terms are handled by an iterative method. with finite differen-
ces or spectral preconditioning. Steady state solutions have been obtained for both types of
boundary conditions. Critical exponents are found to be the same as in the incompressible
case, at ieast for a weak value of the stratification parameter. ¢ 1988 Academic Press. Inc

1. INTRODUCTION

In the past ten years spectral methods have brought extensive progress in the
understanding of the transition to turbulence. Such insights have been possibie due
to the high accuracy of the spectral methods. The main properties of these methods
are well documented in Refs. [1-3]. Among these properties recall the absence of
phase error. Moreover, the convergence is generaily faster than algebraic in the
mesh size. Both properties make these methods well suited to the study of the irans-
ition to turbulence. A paradigm in this area is the incompressible thermal convec-
tion problem, studied within the framework of the Boussinesq approximation. This
approximation also holds for a compressible fluid provided that the vertical extent
of the fluid is small enough. In some situations, for example, stellar convection or
laser driven fusion, the stratification of the fluid can no longer be ignored. Anocther
model is then used, namely, the anelastic approximation where the density varies in
space and time but not on the acoustic time scale. In other words, this
approximation consists in filtering out the high frequency acoustic waves. Several
studies have been carried out within this approximation [4-6], which requires that
the fluid velocity is small compared to the local sound speed [7]. If this
requirement is not satisfied we have to use the full Navier—Stokes equations. Such a
program was first carried out by Graham [87]. Later, Chan, Sofia. and Wollf {3,
using a finite differences code and an eddy viscosity for modelling the small scales of
the turbulence, exhibited the breaking of the rolls at high Rayleigh numbers. This
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justified an early assumption taken in the mixing length theory of stellar convection.
More recently, Hurlburt, Toomre, and Massaguer [ 10], using an improved version
of the Graham’s code, showed that there is no tendency to form multiple rolls, at
least for this range of Rayleigh numbers but they did exhibit time-dependent
solutions for high Rayleigh numbers. However, the subgrid-scale model used in Ref.
[97 could explain the disagreement between both results.

In this paper, we present a spectral collocation method for two-dimensional com-
pressible convection. A Fourier expansion has been used in the horizontal direction.
In the inhomogeneous direction we use an expansion on the Chebyshev
polynomials because of their high rate of convergence and their ability to handle
sophisticated boundary conditions.

When using Chebyshev polynomials in compressible flows, we are faced with two
very severe restrictions on the time step, both of which come from the high
resolution on the boundaries. The first one is the Courant-Friedriechs-Lewy con-
dition (CFL) which is worse in compressible flows due to the high frequency
acoustic waves. The second one is the stability condition for the diffusion terms.
Both difficulties have to be solved by an implicit or semi-implicit scheme. However,
in compressible flows, viscous and thermal diffusion terms are nonlinear. This non-
linearity leads to the use of iterative methods such as suggested by Orszag [11].

We describe the physical problem in the Section 2. Section 3 is devoted to the
numerical method used to solve the equations. In Section 4 we present preliminary
results about steady states close to the threshold where critical exponents are com-
puted.

2. THE PHYSICAL PROBLEM AND THE EQUATIONS OF THE MODEL

The motion takes place in a two-dimensional rectangular cavity of width L, and
height d. The z-axis is directed downward so that the gravity, represented by the
vector g= (0, 0, g), is positive along this direction.

The equations of motion for a compressible, viscous, thermally conducting gas
are as follows:

dp/ér+ 0p u;/ox; =0, (2.1)
0p u,/0t 4 0p u;/u;/0x; = —OP[0x,+ 0T,;/0x; + g,p, (2.2)

and
Op Efét+ 0(pE+ P) u;/0x,= 8t u,/0x,+ 0/0x; K 0T/0x,, (2.3)

where £ is the total energy

E=Lui+ul)+e—gx,, (2.4)
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and 1, is the viscous stress tensor given by
1, = p(Ou,/0x; + Ou,/0x,— 30,; Gu,/0x ), (2.5}

where i, j, /=1, 2. The Stokes’ relation has been used between the first and the
second viscosities. The coordinates x,; and x, stand for the x and 7 coordinates,
respectively.

This set of equations is closed by the equation of state for the perfect gas.

P=R,pT and e=C,T. (2.5%

P. p, T, and e are pressure, density, temperature, and internal energy, respec-
tively; the u; are the components of the velocity. The thermal conductivity and the
dynamic viscosity are taken as constants. R is the gas constant and C, the specific
heat at constant volume.

The boundary conditions have to be chosen according to the physical problem.
In Hydrodynamics one usually deals with viscous fluids confined between two rigid
plates. One naturally chooses rigid boundary conditions where the velocity vanishes
on the walls. On the other hand, in astrophysics one is concerned with stellar con-
vection zones, thus it is reasonable to use slippery boundary conditions where the
horizontal gradient of the velocity vanishes [127]. The boundary conditions for the
temperature are given by fixed temperatures at the bottom and the top of the layer.
Equally we can just give the heat flux at one of these boundaries. In this paper, we
will be dealing both with rigid and slippery boundary conditions for the velocity
and the prescribed temperatures at the upper and lower bounds of the layer. Then,
the boundary conditions read

u, =0 at =124, oy + 4, {

o
[

]

;=0 or Cu/cz= at z=1zy, 2o+ 4, 1273
T(ze)=T, and T(zo+dV=T,. {2.8)

Periodic boundary conditions are used in the horizontal direction for all
variables.

The static state is obtained by setting ¢/¢r =0 and u,=0 in Egs. {2.1)-(2.3}. Ths
solution is a polytrope written as in Ref [127,

T(z)==:Z, (2.9
p(z)=:"2", (2.10)
P(:)::”I“FIZ’H‘FLQ (Eli‘j

The coordinate z goes from Z~' to Z '+ 1, where Z=dizy. The index of the
polytrope is
m=g/R,fo— 1. where o= T(zo+ d)— T(Zg) (2.12)

In Egs.(2.9)(2.11) and henceforth, we will be using the following units: 4,
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dp(z0)/ 1, p(zy), and T(z,) for length, time, density, and temperature, respectively.
The two-dimensional compressible convection problem is characterized by six
dimensionless parameters which are the aspect ratio A, the Prandtl number o, the
ratio of specific heats y, the normalized layer thickness Z, the polytropic index m,
and the Rayleigh number R. The parameters o and y are given by the
thermodynamical properties of the fluid. Z characterizes the stratification of the
configuration while the Rayleigh number measures the degree of the instability.
Their expressions are

A=LJd, o=C,uK,  Z=dz, 7=C

P

//Cva
and
R= (g/Tu) d4[(T1 - Tu)//dﬁ_g/Cp]/(K/pu Cp)(.u/‘pu% (213)

where the subscripts / and u refer to the lower and upper layer boundaries. The
definition of all parameters follows the Refs [8-10, 12].
Now the set of Equations (2.1 )(2.3) can be rewritten as

0p'/0t+ 0p u,/éx; =0, (2.14)
0p u/Ct+ 0p uu;/dx; = —SO(P + p)/ix+ 0t /dx;+ Gp/, (2.15)
and
0p E/0t+ O(pE+ S PYu;/dx;= + dt,;u,/0x;
+S/(y ~ 1) y/o 3°O/dx; ix,, {2.16)

where p’, ©, and p are the density, temperature, and pressure fluctuations. S and G
are auxiliary constants defined by

S=R/[om+1)>Z*(1/(m+1)—(y—1)/7] and G=ZS(m+1). (2.17)

Four different time scales are present in this model of thermal compressible
convection. Two of them are given by the first and the second viscosity. In
dimensionless variables they read

I\lliscous ~ p(:)’ tgiscous ~ 3p(:) (218)
The time scale of the diffusion is given by
Lihermal ~ O—/‘/'}Yp(;’): (2 19 )

where the density goes from Z” to (Z + 1)™. The compressibility of the model leads
to high frequency acoustic waves for which the time scale is given by

[acoustic ~ 1/,'(,},GT(:))1,'2’ (220)

where the mean temperature varies from Z to Z + 1.
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This time scale is generally smaller than the viscous time scales by two or three
orders of magnitude, but according to Eq. (2.19), the thermal time scale may be of
the same order of magnitude, or much smaller than the acoustic time scale. Follow-
ing this remark, a large number of time steps will be needed to cbtain solutions due
to the necessity of resolving the smallest time scale. This has toc be taken inio
account when building a numerical scheme, in order to lead to a reasonabie com-
putation time. Finally, we recall that the sound velocity is ¢;={(CF/ip), =
W OP/Cp)y, or in our system of units ¢2=7S(¢P/lp),, where S is given by (2.17)

3. THE COMPUTATIONAL TECHNIQUE

3.1. General Formulation

All variables are expanded in a Fourier-Chebyshev basis as

A

I=N2
ux, )=} (1) €75 T, (22),
/= —N2

0

b
Cod
Pt
Q-

=-—-N2m

where T, is the Chebyshev polynomial of degree m and L. is the horizontal
periodicity.

We use a collocation method where spatial derivatives are computed in the
spectral space and nonlinear products are performed in the physical space on the
grid points

Xi= iL.\'f"‘le i= 0, 1, . }V‘_ E f: )
5,=Z '+ 12[ L +cos(m(M —j)iM],  j=0.1 ..

[
)

sy
L
%)

The evolution in time is carried out in the physical space by means of a iinite
differences technique.

The incompressible case is generally handied by the classic Adams-Bashforth—
Crank-Nicholson (ABCN) time stepping scheme [ 13-15], despite its low order in
time, typically of order Ar. As already stated, in compressible flows, the time step
required for the convective stability, via the CFL condition is much smaller than
that required for accurate resolution. This suggests that one may try to overcoms
this constraint by an appropriate algorithm. But a full implicit scheme would be too
cumbersome, so, we have chosen a predictor-corrector technique. Our ambition,
although beyond this paper, is to simulate the transition to turbulence, which
requires high time resolution [1]. Thus we are aware that we probably would have
to use the Richardson extrapolation method as in {16], to obtain a higher crder
approximation. Convection and pressure terms are treated by a second-order
Adams-Bashforth predictor and a third-order Adams-Bashforth corrector [171.
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Such a combination is stable for a time step of the order of the CFL condition
[187. This scheme reads

(0% — p") A= — 1/2(3 8p" ulyox, — dp"~ '}~ 1fox,) "
(p" 1t —p™)/At= —1/12(=0p" ' ut~ox;+ 8 dp" u'/Ox,+ 5 dp* u}/ix,)
(¥~ )/t = — 1261 = C;7) s
(i + ' —u)/dr= — 1/12(— C} +8C} = + 5CF) '
+(1+0,4/3) 1/p &uy+'/ox;
with
Ci= —u; 0u;/0x;—1/p S dp/ox;+(1406,/3) 1/p 0u;/0x}
+ 1/3p 0%(u, 8, + u,0,,)/0x, 0x5,+ Gp'/pd,
EX — &M A= — 123D — D7~ Y
( )/ /2( ) (36)

("1 — &MY Ar= —1/12(— D"+ 8D" "'+ 5D%)
+S/(y—1)y/o 80" " 'jox3

with D= 3(& + SP) u;/0x;+ S/(y— 1) y/a 3*°0/0x? and & = pE.

The splitting of the diffusive part into an explicit contribution and an implicit one
in the x, direction is allowed by the large ratio of the mesh spaces in x; and x,
directions.

The nonlinear diffusion terms have to be handled by an iterative method in order
to overcome the very severe restriction on the time step which occurs in a explicit
treatment.

3.2. The Spectral Iterative Method with Finite Differences or Spectral Precondition-
ing

Spectral Chebyshev approximations of such nonconstant or nonlinear operators
lead to full, ili-conditioned, and asymmetric matrices. Direct application of implicit
or/and iterative methods would require prohibitive computational resources. In
order to overcome this difficulty, the use of iterative methods and preconditicning
techniques within the framework of pseudo-spectral approximations has been
suggested [117]. Since then, a number of iterative methods, with finite differences or
finite elements preconditioning, have been suggested and tested on elliptic equations
[19-23]. Among them, the minimal residual Richardson (MRR) method is the
most useful and one of the most efficient, at least for simple boundary conditions
like Dirichlet boundary conditions. Let us recall that the Richardson iterative
method is the following. Let

L*u=f, (3.8)
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be the equation to be solved, where L is the elliptic operator which comes out from
the diffusion terms of the Eqgs. (2.15)}-(2.16), and f the right-hand side of Egs. {3.5).
(3.6). The iterative method is written as

le+l):M(")"O(LAl(Lwll(”)—f)’ §39§

ap

where L,, is the Chebyshev approximation of the operator L, L, is the precon-
ditioning operator, and « is a parameter adjusted in order to maximize the rate of
convergence. A better strategy has been proposed in Refs. [19-217, by redefining
this parameter at each iteration in order to minimize the residue. Such a method is
called the minimal residual Richardson method (MRR). One possible formuiation
of the MRR is the following. Let u° be the initial guess; the initial residue is com-

puted by
r'=f~L,u’. =10 {3.10)

up

and the iterative process is written as

u b =k gk where of = (r*, L, z)/(L,,z*, L,,z%) (3.1
R i & L8 (3.123
:(k+1):L71’.lk+1). (3i3§

up

The previous stage, given by formulas (3.5)-(3.6), provides the intermediate value
u** and we have now to solve the equation

L,u" ' =2[p(z)+p'(x, 2, ) T u**(x, z, 1)/ A1, (3.14)
where
Ly,=2[p(z)+p'(x,z. 1)]/41 — é%ez’. {3.15}

The preconditioning operator L,, must be a very close approximation of the
operator L. It is generally the tridiagonal finite differences approximation of the
operator L, obtained by taking the nonuniform mesh into account. We have
numerically computed the spectrum of the operator 'L, for the operator (3.15)

with finite differences preconditioning. Results are given in Table I, for Dirichlet

TABLE 1

Spectrum of the Operator L' L, for Dirichlet Boundary Conditions.
where Ar Is the CFL Time Step

M Z 2:4t Spectrum
17 1 LIE+4 [1,1.28]
33 L 42E+4 [1,1.55]
65 1 LTE+S 1. 1781

581.75/1-15
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FiG. 1. Preconditioned residuals. Convergence history of the MRR with finite differences precon-
ditioning for the operator defined in Eq. (3.14). The spatial resolutions are M =16, 32, and 64
Chebyshev polynomials. The residue is given by Eq. (3.15) and it has been computed after the stage
(3.12). Dirichlet boundary conditions have been used.

boundary conditions. The mean density varies from | to 2 and typical density
fluctuations are given in Tables IV and V. For vanishing Az ~!, we check that the
spectrum becomes closer to the analytical value [1, n?/4] of the operator L'L,
for L= —¢%az7 [20].

In Fig. | we have displayed the history of the relative residue which is defined by

Residue? = Max((r, r)/( 1, 1)), (3.16)

where f is the right-hand side of Eq. (3.14) and r is the residue given by (3.8). It
appears that the behavior is roughly independent of the resolution M. The rate of
convergence is dramatic at the beginning and decreases by almost one order of
magnitude per iteration afterwards.

On the other hand, it has been pointed out [24], that on a vectorial computer, a

TABLE 11

Spectrum of the Operator L, 'L, for Dirichlet Boundary Conditions,
where A1 Is the CFL Time Step

M V4 2/4t Spectrum
17 1 14E+4 [0.964, 1.042]
33 i S56E+4 [0.974, 1.051]

65 1 23E+5 [0.963, 1.065]
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TABLE III

Spectrum of the Operator L;'L,, for Neumann Boundary Con-

ditions, where A¢ Is the CFL Time Step

M Z 274t Spectrum

17 1 19E+4 [0.964. 1.042 ]
33 1 15E+4 [0.973, 1.051]
65 1 30E+5 [0.963, 1.065]

matrix multiplication can be faster, in terms of CPU time, than the inversion of a
triadiagonal linear system executed in scalar mode. This suggestion leads to the
following preconditioning

Ly, =2p(z)/d1 — 3=, (3.17)

The Chebyshev approximation of the operator L,, is a full matrix, but it does not
depend on time and so, it needs to be inverted only once. It will be a close
approximation to L, provided the relative density fluctuations are not too high.
These behave as the square of the Mach number and Eq. (3.17) will be valid for low
Mach number situations. The spectrum of the operator L, 'L,, has been displayed
in Tables II and II for the same mildly nonlinear solutions used in Table L. for
different resolutions and boundary conditions.

53
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e
g
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3 o o
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FiG. 2. Preconditioned residuals. Convergence history of the MRR with spectral preconditioning for
the operator defined by Eq.(3.16). The spatial resolutions are M =16. 32. and 64 Chebyshev
polynomuals. Dirichlet boundary conditions have been used.
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F1G. 3. Preconditioned residuals. Convergence history of the MRR with spectral preconditioning for
the operator defined by Eq.(3.16). The spatial resolutions are M =16, 32, and 64 Chebyshev
polynomials. Neumann boundary conditions have been used.

These spectra are very close to unity and thus will lead to a high rate of con-
vergence. The evolution of the residues with spectral preconditioning are presented
in Fig. 2 and 3 for Dirichlet and Neumann boundary conditions. The efficiency
increases with the resolution, especially between M = 16 and M = 32. However, we
did notice that the convergence is slower with the Neumann boundary conditions.
This point has been observed by several authors [24]. The spectral preconditioning
defined by Eq. (3.17) is clearly more efficient than the finite differences precon-
ditioning when compared in terms of the number of iterations needed to reach the
spectral accuracy. Moreover, it takes less CPU time. In both cases boundary
conditions are satisfied exactly.

4. PRELIMINARY RESULTS

4.1. Validation of the Code

The temporal numerical scheme and the weakness of the numerical diffusion of
the code has been checked by computing the evolution of small disturbances very
close to the threshold of the onset of convection. This critical Rayleigh number is
known from the linear analysis around the conductive state [257]. Disturbances of
the order of 10~'* at 0.97 R, (resp. 1.03 R.,,) decay (resp. grow). In other words,
the integration of the full nonlinear equations confirms the result of the linear
theory and shows that, if some numerical diffusion is present, it does not perturb
the transition to steady convection.
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On the other hand, it is well known that, when an explicit scheme is used to soive
an hyperbolic equation, the CFL stability condition is of the form

At < C Az{(|V o] + C.). (4.1

where Az is the minimum mesh size, which occurs on the top and bottom boun-
daries in the vertical direction and C, is the local sound speed. C is a constant equal
to 1.4 for the second-order Adams-Bashforth predictor and third-order Adams—
Bashforth corrector numerical scheme. We have checked that our code obeys this
restriction, at least for mildly nonlinear solutions.

4.2. Resulis

In this preliminary study, we limited ourselves to steady state sclutions.

Results, for the Neumann boundary conditions for the velocity and for a weak
stratification parameter, have been displayed on Table IV, where R is the Rayleigh
number, and R, =483.33. V.. is the maximum of the velocity

crit max

(3 (x, 2)+u3(x, )2

over the two-dimensional domain. The same definition has been used for the Mach
number. p,.,, is the maximum of the relative density fluctuations over the two-
dimensional domain, defined by

Pmax = Max(p(x, 2)/p(z}). {4.2)

The same definition holds for T,,,, and P Using values of Table TV we check, as
expected, that p.,, grows linearly as the square of the Mach number for Mach
numbers smaller than 0.20.

The Nusselt number, which measures the efficiency of the convection has been
computed by the following formula [8]:

max*

Nu=(F,—F)/(F —F,. (4.3)

TABLE IV
Rayleigh Number

193332 1450. 1000 800. 650. 57033 551 531.67

R'Ry. 4 3 2.07 1.65 1.34 1.18 114 119
Ve 29900 22603 150112 1L181 7656 5479 4835 4127
Mach max. 0221 0203 0175  0.152 0122 0094 0084 0973
Nu. bottom 2804 2455 1997  L708 1428 1245 1143 1195
P e 0076 0075 0068 0059 0046 0035 6031 0027
T s 0086 0075 0063 0052 0041 -0033 -—0030 —0026

P 0073 0062 0050 0039 0028 0020 0017 004
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This number is exactly zero in the conductive state and coincides with the classic
definition in Boussinesq theory for vanishing values of the stratification of the
parameter Z [8]. F, and F, are respectively the flux of the adiabatic gradient and
the conductive flux. In natural variables they are

F,=gK/C,, F.=K(T,—T,)d. (4.4)
The total flux is given by

F,=K(Z+ {0/z)), (4.5)

where ¢ ) denotes the average value in a horizontal direction. In dimensionless
variables the Nusselt number is written as

Nu=1+ {0/z)/{Z(m+ 1)(1/(m+1)— (3= 1))}, (4.6)

ar’
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Fig. 4. Steady state solution for the Neumann boundary conditions for the velocity: (a) vector field,
(b) vorticity, {c) relative density, (d) temperature, and (e) pressure fluctuations contours are, respec-
tively, displayed. The Rayleigh number R = 1000 (R=2.07 R_,,). The stratification parameter Z =1, the
Prandtl number ¢ =0.71, the aspect ratio 4 =2.79, the polytropic index m =1 and the ratio of specific
heats y =1.67. Solid (broken) contours represent positive (negative) perturbations. More points have
been used for the plot than for the simulation. Real values of the vorticity have been used. In Figs. 4c, d.
and e, isovalues are scaled by a factor 10,000. The compressibility leads to a shift of the center of the
rolls below and on the right (left) of the geometric center of the cell.
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[ (]
[ o]
O

where

Af
(8O0/azy(z)=2 3 aydT(z)/dx, (4.7)

j=0

and a; are the spectral coefficients of the temperature fluctuations. T, is the
Chebyshev polynomial of degree j. Because solutions are stationary, heat fluxes and
then Nusselt numbers have to be equal at the top and the bottom of the layers. This
provides a stopping criterion for the integration process which has been stopped

when

( Nu

— Nty )/ Nty <1074

top

is satisfied.

i
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FIGURE 4 (continued)
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The spatial resolution was 16 x 17 modes and we have checked that the highest
coefficients of the expansion (3.1) were several orders of magnitude lower that the
first ones.

In Figs. 4, we present the isovalues of the vorticity, the relative density, the tem-
perature, and the pressure fluctuations for a steady state with Neumann boundary
conditions for the velocity. Since the value of the stratification parameter is Z=1,
the ratios of the density, temperature, and pressure between the top and the bottom
are 2, 2, and 4, respectively, the polytropic index being equal to 1. Recall that the
only nonzero component of the vorticity w is given by

@ (X, z, 1) = du,(x, z, 1)/0x — Cuy(x, z, t)/Cz. (4.8)

As it is now well known, rolls of convection are deformed by the compressibility
[5, 8, 10]. The strongest density fluctuations occur in the lower part of the central
downward plume where the temperature fluctuations are lowest. As it is detailed

PP RN

R

,
———y

/
]
]
[}
!
\
A}
~

FiG. 5. Steady state solution for the Dirichlet boundary conditions for the velocity: (a) vector field,
(b) vorticity, (c) relative density, (d) temperature, and (e) pressure fluctuations contours are respectively
displayed. The Rayleigh number R =2000. The stratification parameter Z=2, the Prandd number
o =0.71, the aspect ratio 4 =2.79, the polytropic index m =1, and the ratio of specific heats y =1.67.
Rolls of the quarter of the spatial period and boundary layer appear on these patterns.
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TABLE V
Rayleigh
number Vo Mach max. Nu. bottom D s T s P
2000 8.775 0.115 1.555 0.060 0.063 0.055

in Ref [26]. the pressure is responsible for the change in direction of the flow.
Consequently, the largest pressure fluctuations must arise where the flow diverges.

In Figs.5 and in Table V. we have displayed an example of a solution with
Dirichlet boundary conditions for the velocity. The value of the stratification
parameter Z is now equal to 2, and the ratios of the density temperature, and
pressure between the top and the bottom are 3, 3. and 9, respectively, with the
polytropic index still equal to unity. The solution for this type of boundary cor-

I:TIII'VETTiTI
EEAY

oy e &
AVENE SRR EUE NNV 1[_\ llllli!i’lLlilll'll".iI:lKﬂ

FIGURE 5 (continued)
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ditions is formed by four rolls. The periodicity is now half the aspect ratio. Spatial
patterns of Figs. 5 exhibit clearly the boundary layer of the flow on the top and
bottom boundaries.

4.3, Variation of the Nusselt Number and the Maximum Velocity as Functions of the
Rayleigh Number

As in static critical phenomena, it is possible to compute critical exponents close
to the transition. The interest of such coefficients results from the observation that
the values of the critical exponents are rather insentive to the details of the system.
In other words, such coefficients are, at least for a class of systems, universal [27].

In the incompressible case, the critical exponent of the Nussel number and the
maximum velocity are known both from experiments and numerical simulations.
From Ref. [28], we can write

(Nu—1) R~(R— Ri() (4.9)
I/max ~ (R - Rcril)ﬂ (410)

with =1 and B =1, for the incompressible case. These relations hold very close to
the transition for Rayleigh numbers such that

(R_Rcrit)/Rcrit <g*, (411}

Following Ref. [287], ¢* ~ 6.
We have plotted relations (4.9)-(4.10) in Figs. 6 and 7 with the straight line of

LN(NU--1)R

LN{R-RCRIT)

FiGg. 6. Variation of Ln(Nu—1)R with Ln(R., — R); Neumann boundary conditions for the
velocity. The stratification parameter is equal to I: (O) numerical value; — straight line of slope !.
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LN VMAX

LN(R-RCRIT)

FiG. 7. Variation of Ln I, with Ln(R., — R): same conditions as in Fig. 6: — straight line of
slope 4.

slopes 1 and 3. It appears that these power laws hold for the weakly compressibie
case, for ¢* < 0.35. We have computed the slope of both straight lines by the least
squares method, using the first three or four points. The results are

o =1.027 f=0.481 for three points,

{4.12)
x=1.047 f=0.501 for four points,

which are reasonable approximations of the values x =1 and f =1 We guess that
these critical exponents hold for any value of the stratification parameter Z with the
restriction that the larger the Z parameter, the smaller the range of &*
Measurements of the critical exponents and steady state solutions displayed exhibit
the classic symmetry with respect to the middle of the cell. It confirms the accuracy
of the temporal numerical scheme of the pseudo-spectral code, since any spatial
resolution or any truncated model of convection yields the good critical exponents

[28].

5. CONCLUSION

We have developed a numerical algorithm for the solution of two-dimensional
fully compressible thermal convection. The fluid is a perfect gas with constant
dynamic viscosity and thermal conductivity. The algorithm uses finite differences in
time and spatial truncated series of Fourier functions in the horizontal direction
and Chebyshev polynomials in the inhomogeneous direction. Convective and
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pressure terms are handled by a second-order Adams—Bashforth predictor and a
third-order Adams—Bashforth corrector. Nonlinear diffusion terms are treated by an
efficient iterative method with spectral preconditioning. Both Neumann and
Dirichlet boundary conditions for the velocity have been developed. The critical
exponents defined near the transition have been found to be the same as in the
incompressible case, but hold for a smaller range. This shows, as in Ref. [29], that
spectral methods which have been used successfully in incompressible fluids can be
extended to the full Navier-Stokes equations. However, the high frequency acoustic
waves impose a very severe restriction on the time step. Time-dependent solutions
have also been found and will be analyzed in a forthcoming paper.
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